

Vectra is the tradename of a range of thermotropic, i.e. melt processable, liquid crystal polymers (LCP) with very good heat resistance.

A characteristic feature of liquid crystal polymers is their molecular structure. These polymers consist of rigid, rod-like macromolecules. If a liquid crystal polymer melt is subjected to shear or stretching flow, as is the case in all thermoplastic processing operations, then the rigid macromolecules order themselves into fibers and fibrils which are frozenin when the melt cools. This is how the specific morphology of liquid crystal polymers in the solid state is formed. The morphology is in fact very similar to that of wood (fig. 1) in the LCP matrix, fibers of the same polymer are embedded. These polymers are therefore also described as self reinforcing. A fracture photomicrograph of Vectra is shown below in which the wood-like structure can be clearly discerned.

The fiber orientation increases by reduced wall thicknesses. Therefore the values for tensile and flexural modulus are relatively higher for smaller wall thicknesses, see fig. 2.

Fig. 1 • Fracture Surface of Unfilled Vectra LCP

Vectra is characterized by

- continuous service temperatures up to 240°C, short-term up to 340°C,
- inherent flame retardance (UL 94 V-0, some with 5 V-A),
- very good chemical and oxidation resistance,
- very high tensile strength and very high elastic modulus in the flow direction,
- high impact strength,
- very low coefficient of linear thermal expansion, comparable with that of steel and ceramics,
- very low heat of fusion (very fast cycling possible),
- very low melt viscosity,
- flash-free injection moulding,
- very low water absorption.

Tensile strength, rigidity and toughness values in the flow direction are higher the greater the degree of unidirectional melt orientation. These values therefore increase as wall thicknesses are reduced.

These properties of Vectra, which are influenced by the high orientation of the macromolecules, display marked anisotropy. So strength and rigidity in the direction of orientation are much higher than in the transverse direction, while the thermal expansion coefficient measured at right angles to the direction of orientation is higher than the value measured parallel to it. This anisotropy is considerably reduced by fillers and reinforcing materials and can be brought to a level comparable with other fiber reinforced polymers.

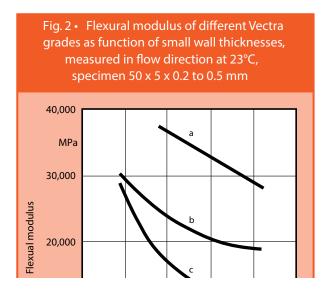

	Table	e 1 • Vectra grad	es – Survey		
Glass-fiber-reinforced	A115				
	A130		E130i	S135	
			E480i		
			E150i	S150	
Carbon-fiber-reinforced	A230D-3	B230			
Filler/fiber	A430		E440i		
	A435 FDA		E471i	S471	
			E473i	S475	
			E488i		
Mineral-filled			E540i	S540	
Graphite-filled	A625			S625	
Conductive (electr.)	A700				
	A725				
Platable			E820i		
			E820i Pd		
			E830i Pd		
			E840i LDS		
Alloys	V140		V143XL		
			V143LC		
Extrudable (unfilled0	A950				V400P

Table 2 • Reco	mme	ndations for grade selection
Best all around characteristics	→	A130,E130i
High temperature stress (SMD)	→	E130i, E480i, E150i, S135, S150
Highest rigidity	→	B230
High rigidity + highest electr. conductivity	→	A230D-3
High impact strength and good surface quality	→	E540i, S540
Very good flowability	→	E130i, E471i, S475
High electrical conductivity	→	A700,A725
Best resistance to chemicals	→	A625
Platable surfaces (e.g. Shields, MID)	→	E820i, E820i Pd, E830i Pd, E840i LDS
Slip-/Slide applications with low wear	→	A430, A435 FDA, A625, S625
Low warp	→	E440i, E471i, E473i, E488i, S471, S475
Suitable for medical applications	→	MT1300, MT1305, MT1310, MT1335, MT4310, MT4350

Grades

The comprehensive Vectra range is built around several base polymers which differ in their high temperature resistance, rigidity and flowability. By compounding with a variety of fillers and reinforcing materials, the base polymers can be tailored to meet the requirements of many different applications (Table 1).

The product code consists of a letter followed by three digits. The letter denotes the base polymer used and the first digit the type of filler or reinforcing material. With the 100, 200, 500 and 600 grades, the last two digits indicate the amount of filler or reinforcing material used in percent by weight when these digits end with a "0" or "5." With the other grades, the last two digits are an internal code characterizing the composition and proportion by weight of the modifying material. Table 1 explains the product nomenclature and surveys the grades currently available.

Applications

Vectra is used for cookware applications, in electrical and electronic components, mainly connectors, components for audio/video/business machines, medical equipment, automotive and mechanical engineering, fibers and the aerospace industry.

Vectra liquid crystal polymer is produced in an ion-free condensation process. Therefore, Vectra is well suited for applications in electronics, where partially ion concentrations below 5 ppm are demanded.

For many moldings exposed to high service stresses, Vectra is the preferred alternative to light metal alloys, thermosets and many other thermoplastics.

For a pre-selection of a Vectra grade in table 2 selection criteria are given.

Supply form

Vectra is supplied as natural granules about 2.8 mm in size ("regular" pellets). Their "natural" color is beige. The graphite-, carbon-black and carbon-fiber-filled grades are correspondingly black or anthracite in color. The standard packaging unit is a 25 kg bag.

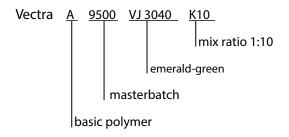
The standard pellet size for Vectra E130i usually is approx. 2 mm diameter ("small" pellets) and will be supplied in 20kg bags. But it is also available in "regular" pellet size.

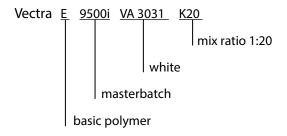
Vectra A230D-3 is only available in 20 kg bags.

Color masterbatches/coloration

Vectra can be colored in order to identify or differentiate between components. However, it is not a common practice to color match and RAL colours are not possible.

Color masterbatches with high pigment content can be supplied in a range of colors. Masterbatches are supplied as granules and are used for melt coloration of natural Vectra grades during processing. Typically, 1 part color masterbatch (5 %) is added to 19 parts natural granules. Lower concentrations are also possible if the color effect achieved is satisfactory.


For in-plant coloration of natural Vectra granules, only Vectra masterbatches should be used. In the case of modified or reinforced Vectra grades, the color of the filler or reinforcing material may influence the final shade. The pigment contents may reduce mechanical properties and flowability.


Some Vectra grades are supplied in melt-colored black formulations with various carbon black contents. These are denoted by the suffix D-1, D-2 or D-3 in the grade designation (e.g. A130D-2 or E130iD-2). A higher suffix means a higher pigment content.

A and B polymers are colored with A9500 masterbatch, Ei polymers are colored with E9500i masterbatch. S Polymers are colored with S9500 masterbatch. Coloring of S Polymer is currently restricted to black – for further information Celanese's technical service should be contacted. The following color concentrates for A, B and Ei resins are readily available:

VA	3031	K20	white
VD	3003	K20	black
VG	3010	K20	blue
٧J	3040	K10	emerald-green
VL	3021	K10	(for A-Polymer) yellow
VL	3043	K10	(for Ei-Polymer) yellow
VS	3035	K10	red

All color concentrates are cadmium-free. The last two digits at the end of the color code designation give the recommended mix ratio of natural granules to color concentrate, e.g.:

Physical properties	Units	Method	A115	A130
Filler/Reinforcement		ISO 3451 ¹⁾	(MT1305)	30
	weight %		15	30
Density West of the artists of the 24 hours (increase in a 4 0.22%C)	g/cm³	ISO 1183	1.5	1.62
Water Absorption after 24 hours (immersion at @23°C)	%	ISO 62-1	0.02	0.005
Moisture Absorption (23°C, 50% RH) saturation	%	ISO 62-4	-	0.04
Mould Shrinkage flow/transverse	%	ISO 294-4	0.1 / 0.4	0.2 / 0.4
Mechanical properties,	MD	160 527 4 2	200	100
Tensile Strength	MPa	ISO 527 -1, -2	200	190
Elongation at Break	%	ISO 527 -1, -2	3.1	2.1
Tensile Modulus	MPa	ISO 527 -1, -2	12000	15000
Flexural Strength	MPa	ISO 178	250	280
Flexural Modulus	MPa	ISO 178	12400	14500
Compressive Strength at 1% deflection	MPa	ISO 604	85	100
Compressive Modulus	MPa	ISO 604	10000	14500
Izod Impact: Un-Notched	kJ/m²	ISO 180/1 U	61	29
Izod Impact: Notched	kJ/m²	ISO 180/1 A	45	24
Charpy Impact: Un-Notched	kJ/m²	ISO 179/1 eU	48	33
Charpy Impact: Notched	kJ/m²	ISO 179/1 eA	42	26
Rockwell Hardness (M-Scale)	_	ISO 2039-2	80	85
Thermal properties				
Deflection Temperature Under LoadDTUL (HDTA) 1.8 MPa	°C	ISO 75 -1, -2	230	235
DTUL (HDT-C) 8 MPa Vicat Softenting Temperature VST/B/50	°C	ISO 75 -1, -2 ISO 306	157 162	190 160
Coefficient of Linear Thermal Expansion flow	x 10 ⁻⁶ /K	ISO 11359 -1, -2	102	6
(20°C to 80°C) transverse	x 10 ⁻⁶ /K	ISO 11359 -1, -2	18	23
Coefficient of Linear Thermal Expansion flow	x 10 ⁻⁶ /K	ISO 11359 -1, -2	5	5
(-50°C to 200°C) transverse	x 10 ⁻⁶ /K	ISO 11359 -1, -2	15	20
Melting Point	°C	ISO 11357	280	280
Electrical properties, measured at standard conditioning atm	osphere ISO	291 – 23/50		
Volume Resistivity	Ω·m	IEC 60093	10 ¹³	10 ¹³
Surface Resistivity	Ω	IEC 60093	>1015	>1015
Dielectric Strength P25/P75	kV/mm	IEC 60243 -1	34	31
Relative Permittivity, 8r Gold Plated1GHz	_	IEC 60250	_	5.2
(Dielectric Constant) DC L1GHz	_	IEC 60250	-	5
Dielectric Loss Tangent, δ‰ Gold Plated ⊢1MHz	_	IEC 60250	-	0.136
(Dissipation Factor) L 1GHz	_	IEC 60250	_	0.061
Relative Permittivity, & unplated1MHz	_	IEC 60250	3	3.7
(Dielectric Constant) DC L 10MHz	_	IEC 60250	2.9	3.2
Dielectric Loss Tangent, δ unplated 1MHz	_	IEC 60250	0.018	0.018
(Dissipation Factor) L 10MHz	_	IEC 60250	0.008	0.008
Comparative Tracking Index CTI	_	IEC 60112	200	175
Flammability				
Underwriter Laboratories (more information see www.UL.com)	Class	UL 94	V-0	V-0

¹⁾ as applicable

Gl	ass Fiber Reinfo	rced			Carbon Fiber	Reinforced	
E130i (MT4310)	E480i	E150i	S135	\$150	A230D-3	B230	
30	40	50	35	50	30	30	
1.61	1.71	1.81	1.67	1.81	1.50	1.50	
0.005	_	_	_	_	-	0.008	
0.03	-	0.006	_	-	-	-	
0.1 / 0.5	-	0.2 / 0.5	0.4 / 0.6	-	-	0.0 / 0.1	
 150	135	130	140	125	149	200	
1.6	1.8	1	1.3	-	1.1	0.7	
 15000	_	17500	15500	-	23500	31800	
220	200	205	230	210	228	300	
13500	16000	18600	14500	20000	26000	25500	
 93	-	125	-	-	-	204	
 14000	_	18000	_	_	-	33000	
 31	-	16	14	-	18	12	
20	20	12	14	_	7	6	
43	-	19	-	-	13	15	
 22	35	9	12	9	7	6	
71	-	66	-	-	-	99	
276	265	260	340	330	233	235	
216	_	225	267	281	193	186	
 195	-	200	-	-	179	167	
7	_	6	1	6	2	0	
20 5	_	17	23	15	6	9	
5 19		6 17	4 22	6 14	2 6	1 8	
 335	335	335	350	350	280	280	
333	333	333	330	330	200	200	
10 ¹³	10 ¹⁴	10 ¹³	10 ¹⁵	_	10°	10³	
 1014	1014	1014	10 ¹⁷	-	10 ¹	10 ²	
 32	42	28	37	32	-	_	
 6.8	-	-	_	-	-	_	
6.3	_	_	_	_	_	_	
 0.188	_	_	_	_	-	_	
0.036	_	_	_	_	-	_	
3.3	4	4.7	3.5	4.6	-	-	
3.2	-	-	3.4	-	-	_	
0.025	0.029	0.028	0.009	0.007	-	_	
0.02	_		0.023	_	_		
175	150	-	-	125	-	-	
V-0	V-0	V-0	V-0	V-0	-	V-0	

			Filler/Fib	er Modified			
A430	A435 FDA (MT1335)	E440i	E471i	E473i	E488i	S471	
25	35	42	35	32	43	45	
1.50	1.62	1.77	1.67	1.63	1.77	1.76	
_	0.003	-	_	_	-	-	
-	0.002	-	-	-	-	-	
0.0 / 0.7	0.1 / 0.4	-	0.1 / 0.5	_	-	0.2 / 0.5	
156	171	118	130	115	110	120	
6.2	3.3	2.0	2.5	2.2	1.5	1.4	
7000	11000	11600	-	10900	13000	_	
125	206	165	180	150	160	185	
7100	10500	12000	13500	10900	13000	12000	
38	77	-	_	59	-	2	
6000	10500	-	-	9200	-	-	
67	33	25	60	30	-	8	
34	17	9	14	10	8	5	
86	38	24	55	33	-	10	
28	26	6	30	20	-	6	
55	55	-	-	40	-	-	
165	230	260	265	250	260	315	
89	162	177	220	159		271	
138	146	-	200	190	-	-	
1	0	11	6	6	-	8	
46	19	20	18	11	_	17	
1 41	1 17	11 21	4 15	6 11	-	8 17	
280	280	335	335	335	338	350	
200	200	333	333	333	330	330	
10 ¹³	10 ¹³	-	10 ¹⁴	10 ¹⁴	_	10 ¹⁴	
10 ¹⁵	>10"		>10"	>10		1011	
 36	32		53	49		-	
4.3				——————————————————————————————————————			
4.2	_	_	_	_	_	_	
 0.086	_	_	_	_	_	_	
0.040	-	_	_	_	_	_	
2.7	3.1	-	3.8	3.5	-	4.0	
2.9	2.8	-	3.7	3.4	-	-	
 0.016	0.016	-	0.031	0.032	-	0.007	
0.008	0.008		0.007	0.034	_	_	
225	175	-	200	175	-	150	
V-0	V-0	_	V-0	V-0	_	V-0	

	Mineral	Filled	Grafite Fil	led
S475	E540i (MT4350)	S540	A625	S625
32	40	40	25	25
1.65	1.74	1.73	1.54	1.53
-	-	-	-	-
-	0.005	0.003	0.03	-
-	0.0 / 0.5	0.1 / 0.9	0.1 / 0.5	0.0 / 0.8
135	105	98	140	120
1.8	3.2	3	5.7	3.4
12300	9800	7900	9000	8300
180	125	130	140	150
12000	10000	9300	10500	9400
_	-	_	56	_
_	_	-	9000	_
-	35	15	62	25
5	5	3	22	4
-	58	13	67	-
5	6	5	11	-
-	-	-	62	-
305	230	275	185	270
213	149	135	114	129
-	-	-	159	227
10	11	9	9	12
24	11	21	26	24
10 25	11 12	9 22	9 30	12 25
350	335	350	280	350
330	333	330	280	330
	10 ¹⁴		1014	
-	1015	_	1011	-
-	46	-		-
-		_	-	-
- -	- -	- -	- -	- -
_	_		_	_
_	_	_	_	_
3.7	3.6	_	13.0	_
-	3.4	-	10.0	-
0.008	0.031	-	0.150	-
-	0.025	_	0.140	_
-	200	-	200	-
V-0	V-0	_	V-0	_

						Specialty Gra	ides	'
Electric	al Conductive		Plat	eable			Alloys	
A700	A725	E820i	E820i Pd	E830i Pd	E840i LDS	V140	V143XL	
30	24	40	42	30	39	40	42	
1.63	1.56	1.78	1.79	1.67	1.81	1.67	1.67	
-	0.020	-	_	_	-	-	-	
-	-	0.005	0.002	-	0.005	_	-	
0.2 / 0.4	0.3 / 0.8	0.3 / 1.2	0.4 / 1.2	-	0.1 / 0.5	0.2 / 0.6	0.3 / 0.6	
144	96	100	89	145	102	130	145	
1.4	4.2	4.0	3.6	1.8	3.4	1.0	1.3	
13000	8100	8800	8000	15000	9300	16000	16000	
220	121	130	120	190	113	210	220	
13400	7700	9000	8800	14000	10300	16500	15700	
100	-	-	-	-	-	-	-	
14500	_	-	_	_	_	_	_	
315	24	44	30	-	33	-	-	
13	15	7	4	31	6	7	9	
15	28	49	28	-	30	-	-	
7	24	8	4	_	_	11	_	
85	44	60	-	-	-	-	-	
232	153	220	215	265	227	270	265	
178	93	130	119	_	137	_	_	
156	-	203	-	-	335	-	-	
8	10	17 	23	-	12	11	8	
25	31	57	49	_	27	21	30	
8 20	7 32	16 56	21 47	-	13 30	7 15	7 28	
280	280	335	335	335	335	280	335	
280	280	333	333	333	333	280	333	
10³	10 ¹	10 ¹³	_	_	10 ¹⁵	10 ¹²	10 ¹⁴	
10 ⁵	104	10 ¹⁵	_	_	10 ¹³	10 ¹⁵	>10 ¹⁶	
-	-	29	_	_	_	25	33	
_	_	7.2	6.8	_	_	_	-	
_	_	6.7	6.6	_	_	_	_	
_	_	0.165	0.163	_	_	_	_	
_	_	0.038	0.010	_	_	-	_	
-	-	-	-	-	_	3.7	3.5	
-	-	-	-	-	-	-	3.4	
-	_	-	-	-	_	0.005	0.160	
_	_	-	_	_	_	-	0.007	
175	-	175	175	-	-	-	-	
V-0	V-0	V-0	V-0	_	_	V-0	V-0	

	Extrudable				
V143LC	A950 (MT1300)	V400P			
40	unfilled	unfilled			
1.67	1.40	1.40			
-	-	_			
-	0.03	0.04			
-	0.0 / 0.7	0.0 / 0.5			
145	182	180			
1.3	3.4	1.3			
16000	10600	13200			
225	158	180			
15500	9100	12000			
-	70	-			
_	-	-			
-	252	-			
9	95	60			
-	267	58			
_	95	46			
-	-	-			
265	187	108			
-	94	_			
-	145	-			
-	4	-			
-	38	_			
_	5 33				
335	280	212			
333	200	212			
-	10 ¹³	-			
_	10 ¹⁴	_			
_	47	_			
_	-	_			
	-	_			
-	-	-			
-	_				
-	3.0	-			
-	-	-			
-	0.020	-			
_	-	-			
-	150	-			
_	V-0	_			

Quality management

Meeting the quality requirements of our customers is a critical activity for Celanese. We constantly pursue and update the certifications needed for this purpose. Our quality management system has been certified to ISO 9000 standards since the early 1990s. In 2003, we built on this foundation by implementing the Global Celanese Integrated Management System (TIMS) for quality, environmental and risk management.

Important certifications include the following standards:

- ISO 9001
- ISO 14001
- ISO/TS 16949
- ISO/IEC 17025

Quality Management System Certifications under ISO 9001:2000 and ISO/TS 16949:2002 have now been achieved for all production sites and supporting remote locations of Celanese worldwide. The ISO/TS 16949:2002 standard combines the automotive regulations in Europe of VDA 6.1, EAQF and AVSQ with the requirements of QS-9000 in North America and supersedes all of these. Celanese received the certification for this standard in 2003.

All production sites of Celanese are certified under ISO 14001:2004, the Environmental System Standard.

The appropriate Celanese laboratories are accredited to meet general requirements according to ISO/IEC 17025:2005 for testing and calibration laboratories.

Our www.Celanese.com website provides further information under "About Celanese" > "Quality and Certifications". This information includes the details of business lines and facilities covered and PDF files of all certificates of registration.

Engineered Materials

- Celanex® thermoplastic polyester (PBT)
- Hostaform® and Celcon® acetal copolymer (POM)
- Celstran, Compel and Factor long fiber reinforced thermoplastic (LFRT)
- Celstran® continuous fiber reinforced thermoplastic (CFR-TP)
- Fortron® polyphenylene sulfide (PPS)
- GUR® ultra-high molecular weight polyethylene (UHMW-PE)
- Impet® thermoplastic polyester (PET)
- Riteflex® thermoplastic polyester elastomer (TPC-ET)
- Thermx® polycyclohexylene-dimethylene terephthalate (PCT)
- Vandar® thermoplastic polyester alloy (PBT)
- Vectra® and Zenite® liquid crystal polymer (LCP)

Contact Information

Americas

8040 Dixie Highway, Florence, KY 41042 USA

Product Information Service

t: +1-800-833-4882 t: +1-859-372-3244

Customer Service

t: +1-800-526-4960 t: +1-859-372-3214 e: info-engineeredmaterials-am@celanese.com

Europe

Am Unisys-Park 1, 65843 Sulzbach, Germany

Product Information Service

t: +(00)-800-86427-531 t: +49-(0)-69-45009-1011

e: info-engineeredmaterials-eu@celanese.com

Asia

4560 Jinke Road, Zhang Jiang Hi Tech Park Shanghai 201203 PRC

Customer Service

t: +86 21 3861 9266 f: +86 21 3861 9599

e: info-engineeredmaterials-asia@celanese.com

Copyright $\ensuremath{\mathbb{G}}$ 2013 Celanese or its affiliates. All rights reserved.

This publication was printed on 19 September 2013 based on Celanese's present state of knowledge, and Celanese undertakes no obligation to update it. Because conditions of product use are outside Celanese's control, Celanese makes no warranties, express or implied, and assumes no liability in connection with any use of this information. Nothing herein is intended as a license to operate under or a recommendation to infringe any patents.

VC-4R3_LCP-019_VectraLCPShortTermPropGuideBro_AM_0613