Technological leap in Celstran® LFT and MuCell® technology

Celstran® LFT structural components

The very good material properties of Celstran® LFT can now be exploited even more successfully in components produced by the MuCell® process. This is ensured through a new screw design developed in partnership with Trexel, Inc. and processing parameters specially optimized to the MuCell® process.

Large lightweight moldings and structural profiles can now be produced from Celstran® LFT with virtually no warpage.
MuCell® technology with Celstran® LFT

Microcellular foam plastics can be produced by mechanical or chemical dispersion of a gas, normally carbon dioxide or nitrogen, in the polymer melt. Nucleation and expansion of the gas bubbles as the mold cavity is filled create a closed-cell microfoam, so enabling lightweight components. Unlike with conventional short-fiber-reinforced materials, in Celstran® LFT, the long fibers mechanically interact with each other in the molded component. They form a glass fiber framework that restricts anisotropic shrinkage and significantly reduces warpage. This property profile makes Celstran® ideally suitable for use in structural components with high mechanical property requirements.

As a result of the newly developed screw design and optimized processing parameters, the long fibers in Celstran® LFT can now be processed much more gently in the MuCell® process. The result is a significant improvement in component properties and new opportunities for designers and injection molders to create large structural components virtually warpage-free, while saving weight at the same time.

Comparison between the standard and new screw

![Comparison between the standard and new screw](image)

- Fewer mixing flights
- Optimization of the non-return valve
- Lower compression

Comparison of properties obtained in the MuCell® process with conventional and optimized parameters

<table>
<thead>
<tr>
<th></th>
<th>MuCell® traditional parameters</th>
<th>MuCell® optimized parameters</th>
<th>improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>unit</td>
<td>standard screw</td>
<td>LGF screw</td>
</tr>
<tr>
<td>1. Drop impact ASTM 3763 [J]</td>
<td>8.91</td>
<td>9.69</td>
<td>11.02</td>
</tr>
<tr>
<td>2. Notched impact ASTM D256 [J/m]</td>
<td>125</td>
<td>3.52</td>
<td>136</td>
</tr>
<tr>
<td>3. Tensile strength ASTM D638 [MPa]</td>
<td>79.5</td>
<td>179.6</td>
<td>87.4</td>
</tr>
</tbody>
</table>

Celanese and MuCell® technology:

As a Trexel licensee, Celanese has been investing considerable effort in the physical microfoam injection molding process (MuCell®) for some years now and was one of the first polymer producers to do so. Now, Celanese operates its own MuCell® plant in its Plastics Technical Center and has acquired a wealth of experience in this technology.

Suitable Celanese plastics for the MuCell® process:

- Celanex® PBT
- Hostaform® POM
- Fortron® PPS
- Celstran® LFT

www.celanese.com · info-engineeredmaterials-eu@celanese.com · Phone +(00)-800-86427-531 · Phone +49-(0)-69-45009-1011

This publication was printed on 19 September 2013 based on Celanese’s present state of knowledge, and Celanese undertakes no obligation to update it. Because conditions of product use are outside Celanese’s control, Celanese makes no warranties, express or implied, and assumes no liability in connection with any use of this information. Nothing herein is intended as a license to operate under or a recommendation to infringe any patents.