Current challenges for fuel system solutions

► New aggressive (bio)fuels
► Increasing fuel temperatures
► Longer lifetimes
► Elevated pressure levels
► Reduced fuel emissions
► More efficient fuel systems
Fuel systems
Applications with Hostaform® POM and Fortron® PPS
Fuel systems
Applications with Hostaform® POM and Fortron® PPS
Fuel systems
Applications with Hostaform® POM and Fortron® PPS

Fuel Supply Module

Hostaform® POM C13031XF 50/5339 and Hostaform® POM EC140XF
Fuel systems
Applications with Hostaform® POM and Fortron® PPS

Fuel Pumps

Hostaform® POM and Fortron® PPS
Hostaform® POM Portfolio for Fuel Applications

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>C 9021</td>
<td>Standard injection molding grade. Excellent flex fuel resistance.</td>
<td>Valves, Flanges, Modules, Filter Housing, Tank Caps</td>
</tr>
<tr>
<td>C 13021</td>
<td>Medium viscosity, easy flowing injection molding grade for precision parts and thin-walled moldings. Excellent flex fuel resistance.</td>
<td>Valves, Flanges, Modules, Filter Housing, Tank Caps</td>
</tr>
<tr>
<td>C 13031</td>
<td>Medium viscosity, injection molding grade for precision parts and thin-walled moldings. As for C 13021 but with 10 % higher strength, rigidity and hardness over the entire permissible temperature range for Hostaform®. Excellent flex fuel resistance.</td>
<td>Valves, Flanges, Modules, Filter Housing, Tank Caps</td>
</tr>
<tr>
<td>C 13031 XF</td>
<td>Injection molding grade, based on C 13031 with improved hot diesel resistsants for long-term diesel temperatures up to 100 °C.</td>
<td>Hot Diesel Applications Valves, Flanges, Modules</td>
</tr>
<tr>
<td>EC140XF</td>
<td>Injection molding grade, electro conductive with improved hot diesel resistsants – for fuel system applications requiring electro conductive properties.</td>
<td>Filler Neck, Brackets, Filter Housings, Valves, Pumpcarrier with ESD requirements</td>
</tr>
<tr>
<td>C 9021 GV1/30</td>
<td>Injection molding grade, reinforced with 26 % (w/w) glass fibers, for parts requiring very high strength and rigidity and increased hardness. Reduced thermal expansion, shrinkage and dimensional change.</td>
<td>Fuel Pumps, Connecting Piece, Overmoulding</td>
</tr>
</tbody>
</table>
Fortron® PPS Portfolio for Fuel Applications

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>1140L4/ L6</td>
<td>Injection molding grade, reinforced with 40% (w/w) glass fibers. Parts with high tolerance requirements in fuel contact at elevated temperatures. Very high stiffness and strength.</td>
<td>Pumps, connecting piece, brush holder, over molding of stator or rotor, fuel rail</td>
</tr>
<tr>
<td>6165A4/ A6</td>
<td>Injection molding grade, reinforced with 65% (w/w) glass fibers and mineral. Parts with very high tolerance requirements in fuel contact at elevated temperatures. Reduced thermal expansion and shrinkage.</td>
<td>Pumps, inlet cover, upper cap, impeller</td>
</tr>
<tr>
<td>6162XF</td>
<td>Injection molding grade, reinforced with 65% (w/w) glass fibers and mineral. Similar to 6165A6 but with reduced fuel uptake and increased crystallization speed.</td>
<td>Pumps, inlet cover, upper cap, impeller</td>
</tr>
</tbody>
</table>
Improvement of Diesel Engines Common Rail Systems

Diesel vehicles produce 30% lower CO₂ emissions than petrol cars.

Source: en.wikipedia.org
Degradation of Diesel Fuel

Oxidation of Diesel-Fuel

- Temperature
- Diesel quality
- Oxygen
- Light
- Cu-Ion

Aggressive degradation products (organic acids, peroxides)

Chemical attack of polymers results in weight loss / brittleness
Storage of Hostaform® POM Grades in Diesel RF-73-A-93 CFPP at 100 °C
Testing Hostaform® POM in Diesel
Elongation at break

Storage of Hostaform® POM Grades in Diesel RF-73-A-93 CFPP at 100 °C

Elongation at Break (%)
0 5 10 15 20 25 30 35

Ref. Sample
500 h
1000 h

C 13031
C 13031 XF 50/5339

© Celanese
Test Fuel Overview

Composition various test fuels

- **Fuel C**: 85% Toluol, 50% Isooctan
- **CM 15**: 85% Fuel C, 50% Isooctan
- **CE 22**: 78% Fuel C, 22% Ethanol
- **CE 85**: 85% Ethanol
- **FAM A**: 15% Methanol, 78% Ethanol, 5% Diisobutyl, 15% Isooctan, 0.5% Wasser
- **FAM B**: 84.5% Methanol, 50% Toluol

Prüfflüssigkeit 1 nach ISO 1817
Prüfflüssigkeit 2 nach ISO 1817
EU Biofuels Directive 2009 sets “reference values” of a

- 10% biofuel component in vehicle fuel by 2020
- 20% share of renewables in overall EU energy consumption by 2020
Ageing of Hostaform® POM C 13031 in RME temperature 100° C, ISO 1/4 Bars

Change of weight over soak time (hours):
- 500 h
- 1000 h
- 2000 h
- 4000 h

Change of weight (%)
Ageing of Hostaform® POM C 13031 in RME temperature
100° C, ISO 1/4 Bars

Tensile strength

<table>
<thead>
<tr>
<th>Soak time (hours)</th>
<th>500 h</th>
<th>1000 h</th>
<th>2000 h</th>
<th>4000 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile strength</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
</tbody>
</table>
General parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Independent test lab used</td>
<td>EG&G Automotive Research</td>
</tr>
<tr>
<td>Test protocol</td>
<td>SAE J1748</td>
</tr>
<tr>
<td>Temperatures</td>
<td>65°C & 121°C</td>
</tr>
<tr>
<td>Total time</td>
<td>5000 hours</td>
</tr>
<tr>
<td>Factors measured</td>
<td>Dimensional stability, weight change, tensile strength, tensile elongation, tensile modulus, ISO notched charpy impact strength</td>
</tr>
</tbody>
</table>

Thermoplastics tested

65 °C

<table>
<thead>
<tr>
<th>Thermoplastic</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetal copolymer</td>
<td>Polyphenylene sulfide</td>
</tr>
<tr>
<td>Acetal homopolymer</td>
<td>Nylon 6.6</td>
</tr>
<tr>
<td>Polybutylene Terephthalate</td>
<td>High temperature nylon</td>
</tr>
<tr>
<td>Aliphatic polyketone</td>
<td>Polychthalamide</td>
</tr>
</tbody>
</table>

121 °C

<table>
<thead>
<tr>
<th>Thermoplastic</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetal copolymer</td>
<td>Polyphenylene sulfide</td>
</tr>
<tr>
<td>Acetal homopolymer</td>
<td>Nylon 6.6</td>
</tr>
<tr>
<td>Polybutylene Terephthalate</td>
<td>High temperature nylon</td>
</tr>
<tr>
<td>Aliphatic polyketone</td>
<td>Polychthalamide</td>
</tr>
</tbody>
</table>

Test Fuel (65 °C)

<table>
<thead>
<tr>
<th>Fuel Type</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMO</td>
<td>Fuel C (50% Isooctane and toluene)</td>
</tr>
<tr>
<td>CAP</td>
<td>Fuel C + agressive water + peroxide</td>
</tr>
<tr>
<td>CM15A</td>
<td>85% Fuel C + 15% methanol + agressives water</td>
</tr>
<tr>
<td>CM25A</td>
<td>75% Fuel C + 25% methanol + agressives water</td>
</tr>
<tr>
<td>CM85A</td>
<td>15% Fuel C + 85% methanol + agressives water</td>
</tr>
<tr>
<td>CE22A</td>
<td>78% Fuel C + 22% ethanol + agressives water</td>
</tr>
<tr>
<td>CE85A</td>
<td>15% Fuel C + 85% ethanol + agressives water</td>
</tr>
<tr>
<td>TF1</td>
<td>GM TF1 (equivalent to IE10)</td>
</tr>
<tr>
<td>TF2</td>
<td>GM TF2 (equivalent to IM5E2)</td>
</tr>
</tbody>
</table>

Test Fuel (121 °C)

<table>
<thead>
<tr>
<th>Fuel Type</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM15A</td>
<td>85% Fuel C + 15% methanol + agressives water</td>
</tr>
<tr>
<td>CE22A</td>
<td>78% Fuel C + 22% ethanol + agressives water</td>
</tr>
<tr>
<td>CE85A</td>
<td>15% Fuel C + 85% ethanol + agressives water</td>
</tr>
<tr>
<td>TF1</td>
<td>GM TF1 (equivalent to IE10)</td>
</tr>
</tbody>
</table>
Testing Hostaform® POM in Flex Fuels

Change of weight

Hostaform® POM C13031 after Fuel Soak 5000 Hours at 65 °C in Flex Fuels

© Celanese

CM15A
CE22A
CE85A
C

© Celanese

Fuel Systems Solutions 18
Testing Hostaform® POM in Flex Fuel

Tensile strength

Hostaform® POM C13031 after Fuel Soak 5000 Hours at 65 °C in Flex Fuels

[Graph showing percent retained (%) vs. soak time (hours)]

© Celanese

Fuel Systems Solutions
Testing various thermoplastics in Flex Fuels

Change of weight in Fuel CE22A

Various Grades at 121 °C over 5000 Hours in Fuel CE22A

Testing various thermoplastics in Flex Fuels

- Nylon 6/6 25% GR
- HTN 35% GR
- PPA 45% GR
- Fortron 40% GR
Testing various thermoplastics in Flex Fuels

Change of weight in Fuel CAP

Various Grades at 121 °C over 5000 Hours in Flex Fuels in Fuel CAP

- Nylon 6/6 25% GR
- Fortron 40% GR
- PPA 45% GR
- HTN 35% GR
Testing various thermoplastics in Fuel CM15
Long-term behavior

Storage in 15% Methanol Containing Fuel (CM15, 1500h, 50 °C)

- **PA 6**
- **PA 6.6**
- **PBT**
- **POM Copolymer (Hostaform® C)**
- **PPS (Fortron®)**

* Stress cracking after drying ** Polymer degradation

© Celanese Fuel Systems Solutions 22
AdBlue® SCR* technology: Reduced NOx emissions

► AdBlue® = aqueous urea solution used in Selective Catalytic Reduction (SCR) Systems
► Reduces nitrogen oxide concentration in the exhaust emissions from diesel engines.
► Use of SCR technology in vehicles eliminates the need to switch to the so called ‘rich-burn mode’ to regenerate the storage
► Diesel engine can be further improved for reduced fuel consumption.

*Selective Catalytic reduction
AdBlue is a registered trademark of VDA
Disclaimer

This publication was printed on 1 October, 2013 based on Celanese’s present state of knowledge, and Celanese undertakes no obligation to update it. Because conditions of product use are outside Celanese’s control, Celanese makes no warranties, express or implied, and assumes no liability in connection with any use of this information. Nothing herein is intended as a license to operate under or a recommendation to infringe any patents.

Copyright © 2013 Celanese or its affiliates. All rights reserved.

Contact Information

Americas
8040 Dixie Highway, Florence, KY 41042 USA
Product Information Service
t: +1-800-833-4882 t: +1-859-372-3244
Customer Service
t: +1-800-526-4960 t: +1-859-372-3214
e: info-engineeredmaterials-am@celanese.com

Europe
Am Unisys-Park 1, 65843 Sulzbach, Germany
Product Information Service
t: +(00)-800-86427-531 t: +49-(0)-69-45009-1011
e: info-engineeredmaterials-eu@celanese.com

Asia
4560 Jinke Road, Zhang Jiang Hi Tech Park
Shanghai 201203 PRC
Customer Service
t: +86 21 3861 9266 f: +86 21 3861 9599
e: info-engineeredmaterials-asia@celanese.com