Bright prospects:
Hostaform® POM MetaLX™ with metallic look

In automotive engineering, innovations to reduce costs and processing time are a key success factor. Celanese is continually developing optimized POM grades that permit cost-efficient mass production. Companies interested in marketing eco-friendly products can eliminate painting and/or plating. For example, Honda is using door handles made from Hostaform® POM MetaLX™ on the Honda Accord. This special grade of the copolymer achieves the required high-quality metallic finish without the need for additional painting or other operations.

Hostaform® POM MetaLX™ replaces painted parts
- Cost-efficient production of components with integrated metallic look for vehicle interiors
- Door handles made from Hostaform® POM MetaLX™ on the Honda Accord

Hostaform® POM MetaLX™ meets the requirements for use in vehicle interiors
- Resistance to chemicals and automotive fluids
- No restrictions on custom color development
- Excellent color fastness
- Good scratch and impact resistance
- No tendency to environmental stress cracking

Advantages of Hostaform® POM MetaLX™ in production
- No pretreatment or post-molding operations necessary
- Seven manufacturing savings: painting, coating, vacuum metalizing, quality checks, special packaging, chemical disposal and reduction in rejections rates – productivity improvements
- Reduction in associated handling, transport and quality control costs

Your contact

Michael Hörr
Business Unit Automotive
hoerr1@celanese.com
Phone: +49 69 45009 1672
Fax: +49 69 45009 51672

Hostaform® POM MetaLX™ makes a dazzling impression in the Honda Accord with classy metallic-look door handles.
In modern vehicle interiors today, functional elements are expected not only to provide intuitive handling but also to be esthetically designed. But until now, costly pretreatment and post-molding operations were required to provide plastic components with an attractive metallic look. That is why Honda is using a new material for the interior door handles of the Accord: Hostaform® POM MetaLX™. This innovative special grade of the Celanese polymer achieves parts that have the required high-quality metallic finish immediately on removal from the injection mold. The integrated metallic look makes post-molding operations such as painting, coating and vacuum metalizing unnecessary, so ensuring cost- and time-optimized production.

Hostaform® POM MetaLX™ has better stiffness than standard PC/ABS blends, while providing good tensile strength and impact resistance. The polymer shows no tendency to crazing and stands chemicals used in cockpit cleaners without any problem. Components produced from Hostaform® POM MetaLX™ are unaffected by temperature variations, colorfast, scratchproof and highly resistant to abrasive wear. They also have good sliding friction properties in contact with other polymers.

Advantage: no pretreatment or post-molding operations required

In modern vehicle interiors today, functional elements are expected not only to provide intuitive handling but also to be esthetically designed. But until now, costly pretreatment and post-molding operations were required to provide plastic components with an attractive metallic look. That is why Honda is using a new material for the interior door handles of the Accord: Hostaform® POM MetaLX™. This innovative special grade of the Celanese polymer achieves parts that have the required high-quality metallic finish immediately on removal from the injection mold. The integrated metallic look makes post-molding operations such as painting, coating and vacuum metalizing unnecessary, so ensuring cost- and time-optimized production.

Hostaform® POM MetaLX™ has better stiffness than standard PC/ABS blends, while providing good tensile strength and impact resistance. The polymer shows no tendency to crazing and stands chemicals used in cockpit cleaners without any problem. Components produced from Hostaform® POM MetaLX™ are unaffected by temperature variations, colorfast, scratchproof and highly resistant to abrasive wear. They also have good sliding friction properties in contact with other polymers. **Conclusion:** the special grade Hostaform® POM MetaLX™, which is available in many different metallic shades, combines attractive design with functionality, a long service life and cost efficiency.

Properties

<table>
<thead>
<tr>
<th>Properties</th>
<th>Unit</th>
<th>Test method</th>
<th>Hostaform C9021</th>
<th>Hostaform® POM MetaLX™</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>g/cm³</td>
<td>ISO 1183</td>
<td>1,41</td>
<td>1,41</td>
</tr>
<tr>
<td>Melt Volume Rate MVR 190/2.16</td>
<td>ml/10 min</td>
<td>ISO 1133</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>Tensile Modulus</td>
<td>MPa</td>
<td>ISO 527</td>
<td>2850</td>
<td>2700</td>
</tr>
<tr>
<td>Tensile Strength</td>
<td>MPa</td>
<td>ISO 527</td>
<td>64</td>
<td>54</td>
</tr>
<tr>
<td>Elongation at Yield</td>
<td>%</td>
<td>ISO 527</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>Nominal Elongation at Break</td>
<td>%</td>
<td>ISO 527</td>
<td>30</td>
<td>–</td>
</tr>
<tr>
<td>Notched Impact Strength (Charpy, 23 ℃)</td>
<td>kJ/m²</td>
<td>ISO 179-1/1eA</td>
<td>6,5</td>
<td>5,1</td>
</tr>
<tr>
<td>Notched Impact Strength (Charpy, –30 ℃)</td>
<td>kJ/m²</td>
<td>ISO 179-1/1eA</td>
<td>6</td>
<td>–</td>
</tr>
<tr>
<td>HDT/A (1.8 N/mm²)</td>
<td>°C</td>
<td>ISO 75 Teil 1 und 2</td>
<td>104</td>
<td>88</td>
</tr>
</tbody>
</table>

Advantages

- FDA and NSF listed grades available
- Eliminates environmental challenges associated with painting and plating

Applications (selection)

- Automotive industry: sunroofs, fuel caps, ventilation louvers
- Electrical industry/electrical appliances: parts for electric toothbrushes and shavers
- Medical technology: mechanical parts in drug delivery systems such as insulin pens

Processes

Injection molding, extrusion, rotational molding, physical foaming, GIT/WIT

Notes for Users: The information contained in this publication should not be construed as an agreement or guarantee regarding certain properties of our products. It is the sole responsibility of the user to determine the suitability of a particular material and component design for a specific application. We strongly recommend the user to obtain the latest manufacturers’ instructions on the use of the selected materials and to follow these. Any existing industrial property rights must be observed.